Estados Unidos. Investigadores del Laboratorio Ames del Departamento de Energía de EE.UU., diseñaron y construyeron un sistema de modelo avanzado que utiliza con éxito cantidades muy pequeñas de materiales magnetocalóricos para lograr un enfriamiento a nivel de refrigeración.
El desarrollo marca un paso importante en la creación de nuevas tecnologías para reemplazar la refrigeración por compresión de gas de hace 100 años con sistemas de estado sólido de hasta un 30 por ciento más de eficiencia energética.
Llamado CaloriSMART, el sistema fue diseñado específicamente para la evaluación rápida de materiales en regeneradores sin una gran inversión en tiempo o fabricación. La prueba inicial sometió una muestra de gadolinio a campos magnéticos secuenciales, haciendo que la muestra alternara entre calentamiento y enfriamiento. Utilizando bombas de tiempo preciso para hacer circular el agua durante esos ciclos de calentamiento y enfriamiento, el sistema demostró una potencia de enfriamiento sostenida de aproximadamente 10 vatios, con un gradiente de 15 grados Celsius (entre menos de 30 ° F) entre los extremos fríos y calientes usando solo tres centímetros cúbicos de gadolinio.
"A pesar de las predicciones, fracasaríamos debido a ineficiencias y pérdidas anticipadas, siempre creímos que funcionaría", dijo Vitalij Pecharsky, director del proyecto CaloriCool® y científico del laboratorio Ames. "Pero nos sorprendió gratamente lo bien que funcionó. Es un sistema notable y funciona excepcionalmente bien. La refrigeración magnética cerca de la temperatura ambiente se ha investigado ampliamente durante 20 años, pero este es uno de los mejores sistemas que se ha desarrollado".
Pecharsky dio crédito a la científica del proyecto Julie Slaughter y a su equipo por diseñar el sistema que tomó aproximadamente cinco meses para su construcción. Se usaron capacidades de impresión 3D para construir de forma personalizada el colector que contiene la muestra y hace circular el fluido que realmente aprovecha el poder de enfriamiento del sistema. El sistema también presenta imanes personalizados de neodimio-hierro-boro que entregan un campo magnético concentrado de 1,4 Tesla a la muestra, y el sistema de bombeo en línea de precisión que hace circular el fluido.
"Solo necesitamos 2-5 centímetros cúbicos de material de muestra, en la mayoría de los casos unos 15-25 gramos", dijo Slaughter. "Estamos estableciendo el punto de referencia con el gadolinio y sabemos que hay otros materiales que funcionarán aún mejor". Y nuestro sistema debería ser escalable (para enfriamiento comercial) en el futuro ".
"Pero la razón principal por la que concebimos y construimos CaloriSMART es acelerar el diseño y desarrollo de materiales calóricos para que puedan trasladarse al espacio de fabricación al menos dos o tres veces más rápido en comparación con los 20 años que normalmente lleva hoy", agregó. Pecharsky, quien también es Profesor Distinguido de Anston Marston en el Departamento de Ciencia e Ingeniería de Materiales de la Universidad Estatal de Iowa.
La prueba magnetocalórica es solo el comienzo. El plan es actualizar el sistema para que funcione con materiales elastocalóricos que se calientan y enfrían de forma reversible cuando se someten a tensión o compresión cíclica y materiales electrocalóricos que hacen lo mismo cuando está sujeto a un campo eléctrico cambiante. El sistema incluso operará en un modo de campo combinado que permite que una combinación de técnicas se use simultáneamente.
"Hay un puñado de lugares que estudian los materiales elastocalóricos y electrocalóricos", dijo Pecharsky, "pero nadie tiene los tres en un solo lugar y nuestro sistema ahora nos brinda esa capacidad".
Fuente: Ames Laboratory - Departamento de Energía de EE.UU.